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Abstract 

The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era 
in the late  19th century, which was followed by a genetic era starting in the late  20th century. Genome-wide link-
age analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current 
high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing 
approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has 
allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has 
led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and 
polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, 
CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to 
a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a 
continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering 
of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing impor-
tant roles as well. In this review we aim to provide insights on the complementary roles played by different genomic 
approaches in allowing the current understanding of the genetic architecture of inherited CRC.
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Introduction
Familial clustering of colorectal cancer (CRC) and 
gynecological tumors in families affected with what 
later came to be identified as Lynch syndrome (LS) was 
among the first clinical clues that led to the proposal of 

the principle of “inherited cancer” in the late  19th century. 
Back then, the idea was completely eccentric, and was 
first addressed in 1866 by the neuroanatomist Paul Broca 
who presented the clustering of 15 cases of breast can-
cer in his wife’s family [1]. In 1895, the pathologist Aldred 
Warthin “officially” proposed the concept of cancer 
predisposition by establishing a 4-generation pedigree 
for “family G” who had CRC and gynecological tumors 
transmitted in an autosomal dominant (AD) fashion [2]. 
An update about the family was published in the mid-
1930s by Warthin’s colleagues Hauser and Weller. Yet, no 
specific diagnosis was made [2]. In the meantime, famil-
ial adenomatous polyposis (FAP) was starting to come to 
light. In 1925, the senior surgeon Percy Lockhart-Mum-
mery, described 3 families with polyposis and CRCs at 

*Correspondence:
Asta Försti
a.foersti@kitz-heidelberg.de
1 Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
2 Division of Pediatric Neurooncology, German Cancer Research Center 
(DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
3 Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, 
Germany
4 University of Oxford, Oxford, UK
5 King Hussein Cancer Center (KHCC), Amman, Jordan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13053-023-00245-5&domain=pdf


Page 2 of 6Ahmad and Försti  Hereditary Cancer in Clinical Practice            (2023) 21:1 

an early age. In 1939, Cuthbert E. Dukes, together with 
Lockhart-Mummery, published 7 other families showing 
the same AD inheritance, and they contributed the con-
dition to an inherited abnormality [3]. In 1962, during his 
internal medicine residency, Henry Lynch came across a 
CRC patient with a family history similar to “family G” 
without evidence of polyposis, and in 1966, published the 
pedigree of the family together with another family iden-
tified by Marjorie Shaw [2]. Since then, international col-
laborations have been initiated by Lynch and colleagues 
with the aim of collecting and evaluating cancer-prone 
families [4], and it was not until 1984 that the termi-
nologies of hereditary non-polyposis colorectal cancer 
(HNPCC) and LS were coined [2].

During the late 1980s, the molecular basis of famil-
ial cancers began to be unraveled. In 1986, RB1 was 
the first identified cancer predisposition gene (CPG) 
[5, 6]. APC was identified in 1991 [7], and MSH2 was 
the first identified LS locus in 1993, when microsatellite 
instability (MSI) was first described as well [2]. Linkage 
analysis is the classic method which has contributed 
to the discovery of more than a 100 high-to-moderate 
risk CPGs [1, 8], including the major CRC risk genes 
[9–11]. During this era, it became known that 2–8% of 
CRCs could be attributed to inherited genetic defects. 
However, despite the great contribution of linkage 
analysis to CPG mapping, the number of identified 
genes had soon come to a plateau, and the focus shifted 

toward a polygenic model of inheritance. In 2005, the 
first GWAS for a non-cancerous disease was published, 
and since then more than 50,000 associations have been 
reported, which have revolutionized the understand-
ing of genetic architecture of several inherited diseases, 
including cancer [12–14]. As for CRC, GWASs have 
identified ~ 100 validated loci accounting for ∼12% of 
familial relative risk [15], and have additionally offered 
a possible explanation for the inherited personalized 
risk of CRC when the family history is negative [11]. 
However, as the rare high-to-moderate penetrant vari-
ants and the common variants with ultra-small effect 
sizes are not well interrogated by GWASs, many ques-
tions regarding CRC inheritance were left unanswered 
[16, 17]. In the last 10 years, genome-wide sequencing 
approaches have led to the identification of a second 
batch of rare CRC genes that are mainly of moderate-
risk. These genes have helped define new familial CRC 
and polyposis syndromes [11].

Together, genome-wide approaches have aided the 
current understanding of inherited risk of CRC, and 
it is believed nowadays that contrary to most common 
cancers which are dominated by polygenic architec-
ture, CRC is equally governed by monogenic and poly-
genic inheritance [11]. This review aims at highlighting 
the complementary roles played by different genomic 
approaches that have led to the current knowledge 
about the genetic architecture of inherited CRC (Fig. 1).

Fig. 1 Summary of the genome-wide approaches utilized to identify CRC risk genes
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Linkage analysis: the classical high‑penetrance 
CRC genes
Monogenic inheritance refers to a type of Mende-
lian inheritance whereby a trait is determined by the 
expression of a single high-risk gene. This term is 
related to the phrase “rare allele model of inheritance”, 
as it attributes inherited diseases to the inheritance of 
any of various rare deleterious alleles contributing to 
the disease. Each of these rare variants occurs at a fre-
quency of < 1% and follows a monogenic inheritance 
architecture in the sense of elevating the risk to two-
fold or more against the background [1, 17]. Classically, 
there used to be multiple arguments supporting this 
model of inheritance, of which the evolutionary theory 
provides the strongest ground by advocating that del-
eterious variants should be selected against, and hence 
could not be common [17]. Further supporting this 
model of inheritance are the multiple familial disorders 
which can be browsed on the Online Mendelian Inher-
itance in Man (OMIM) database [18].

Genome-wide linkage analysis, which was developed 
in the second half of the  20th century, is the classic sta-
tistical method applied for mapping Mendelian traits 
to their chromosomal locations by examining genome-
wide markers such as microsatellite markers (and later 
on, single nucleotide polymorphisms (SNPs)) in pedi-
grees segregating the trait. After identifying the chro-
mosomal region linked to the trait, targeted sequencing 
is conducted to identify the particular responsible gene 
(Fig.  1A). An accurate extended pedigree with a near-
typical Mendelian inheritance pattern is an important 
prerequisite for linkage analysis to yield a statistically sig-
nificant result [16].

As for CRC, linkage analysis has allowed the identifi-
cation of the 10 classic high-penetrance genes that con-
tribute to the well-known hereditary CRC and polyposis 
syndromes. These genes include the 4 DNA mismatch 
repair (MMR) genes, MLH1, MSH2, MSH6 and PMS2, 
that are inherited in an AD manner and cause LS when 
mutated. There are also the APC gene with AD muta-
tions, and the MUTYH gene, which follow autoso-
mal recessive (AR) inheritance, and contribute to FAP, 
together with SMAD4, BMPR1A, STK11 and PTEN 
which contribute to the less frequent CRC predisposing 
syndromes characterized by the presence of hamartoma-
tous polyps [10, 11]. These discoveries of hereditary CRC 
and polyposis syndromes, together with the development 
of multiple-CPG panels [10] have led to significant impli-
cations on clinical oncology practice, facilitating cancer 
predisposition services [19]. In addition, patients with 
some CRC predisposition syndromes can particularly 
benefit from therapeutic options such as immunotherapy 
for LS patients [20].

On the other hand, there are two major problems that 
have come to light with the discoveries of these high-
penetrance CPGs. The first is the psychosocial burden 
of available genetic information on carrier families who 
need to adapt to the dilemma of living with the uncer-
tainties of several family members manifesting the vari-
ous tumors predicted by the genetic testing. An MSH2 
carrier for example has an 80.4% probability that he or 
she will develop any cancer by the age of 75 years, includ-
ing a 43% risk of CRC and a 65.7% risk of a gynecologi-
cal cancer for women, in addition to a 50% probability 
that each of their offspring carries the variant with its 
risks of various malignancies [21]. The second concern 
is that much of the familial cases have not been solved 
by these genes. This gap between the number of familial 
CRC cases, and the number explained by high-risk genes, 
was well illustrated in 2021 by Hemminki et al. who have 
studied familial CRCs in the Swedish population [19]. 
They showed that among the 49,000 CRCs that were 
diagnosed in one generation, there were 7,650 patients 
(15.7%) who had a family history of CRC in parents or 
siblings; among these, only 417 (5.5%) had two or more 
family members (parents or siblings) affected by CRC, 
which could be suggestive of underlying high-risk CRC 
genes [19].

Genome‑wide association studies: polygenic 
architecture of CRC 
With the beginning of the  21st century and with the gap 
in understanding of genetic architecture of diseases left 
by monogenic model of inheritance, the focus shifted 
to complex polygenic inheritance of common low-risk 
variants, for which GWAS has become the most popu-
lar approach to find associations at a population level. In 
comparison to genome-wide linkage analysis, which is 
based on examining genome-wide polymorphic mark-
ers within the same family, whereby a few opportuni-
ties of recombination events have occurred, the GWAS 
approach examines SNPs throughout the genomes of 
thousands of genetically diverse individuals, allowing a 
higher-resolution map (Fig.  1B). However, this advan-
tage comes with an increased probability of false-posi-
tive results if not properly accounted for [16]. The term 
“polygenic inheritance” refers to a non-Mendelian model 
of inheritance, whereby a trait is governed by the co-
inheritance of 2 or more independent genes that exert 
additive effects [22]. With the development of GWAS, 
this model has gone through two major refinements, the 
first was the “common disease-common variant hypoth-
esis” which correlates traits to the co-inheritance of a 
small number of moderate-effect loci. Then came the 
better-developed “infinitesimal model of inheritance” 
which correlates traits to co-inheritance of hundreds or 
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thousands of common small-effect size variants [17]. As 
for malignancies, it is believed that most of the common 
cancers, such as lung and prostate cancer, are dominated 
by polygenic inheritance, and that most rare malignan-
cies are dominated by monogenic inheritance. However, 
as the “common disease-common variant model” has not 
been able to explain much of the “missing heritability” of 
diseases [17], it is not surprising that some cancers do not 
follow this paradigm. Examples are ovarian cancer which 
is dominated by monogenic inheritance despite being a 
common disease, and CRC which seems to be equally 
dictated by monogenic and polygenic architectures [11].

GWASs have identified ~ 100 independent common 
low-risk loci for CRC [11, 15]. There are multiple appli-
cations of these discoveries. Firstly, they have provided 
an explanation of about 12% of familial relative risk of 
CRC which do not manifest typical Mendelian inherit-
ance [11, 15]. Secondly, GWAS has allowed the develop-
ment of polygenic risk scores (PRSs) which calculate the 
total risk inferred by the various risk loci harbored by 
individual subjects and therefore predicts their personal-
ized risk of cancer [23]. These PRSs could be theoretically 
used to develop personalized cancer screening proto-
cols. A British group has suggested adopting a personal-
ized screening protocol for CRC based on a PRS in the 
top 1% of risk, which infers a 7.7-fold increased risk of 
developing CRC. Such an approach could result in 26% 
fewer subjects being eligible for screening, in comparison 
to the currently utilized age-based protocol, which could 
have positive economic implications. However, it would 
also decrease the number of cases detected by screen-
ing by about 6% [24]. In addition, while an elevated PRS 
is associated with a theoretical few-fold increased risk 
of a disease, it refers to a relative risk in comparison to 
individuals across the PRS continuum within a specific 
population [23, 25]. As a consequence, its utility for indi-
vidual-level risk prediction is limited, as is its transfer-
ability across populations. Thus, PRSs are still considered 
as research tools and have not been put into clinical prac-
tice [23, 25].

Thirdly, GWASs have allowed the discovery of novel 
oncogenic pathways by further analysis and characteriza-
tion of the function of the genes defined by candidate loci 
[26]. It is estimated that 20% of identified loci by GWASs 
include a pathogenic gene that is involved in mono-
genic disease inheritance [27]. In fact, GWAS might be 
more important to understand the somatic pathways 
for CRC than germline processes. A meta-analysis of 
GWASs conducted in 2019 has identified, in addition to 
the established pathways related to TGF-β/SMAD, BMP, 
Wnt-β-catenin, Hedgehog signaling, cell cycle, and tel-
omere maintenance, further signals implicating Krüp-
pel-like factors, Hippo-YAP signaling, long noncoding 

RNAs, somatic drivers, and supported a role of immune 
function [15]. However, this expanding knowledge about 
the polygenic architecture of CRC is challenging the cur-
rent understanding of CRC biological pathways, together 
with the ability of developing precision therapeutics [15, 
28]. Finally, as GWAS is a population-based approach 
designed to detect associations with common low-risk 
loci and not rare moderate-to-high risk genes, much of 
the familial CRC cases has remained unanswered despite 
the discoveries revealed by GWAS [13].

Genome‑wide sequencing approach: 
moderate‑penetrance CRC genes and the new 
familial CRC and polyposis syndromes
A decade after the development of GWAS, whole-
exome (WES) and whole-genome sequencing (WGS) 
approaches have been developed and led to the identi-
fication of various putative cancer predisposition vari-
ants, that could neither have been identified by linkage 
analysis, due to their non-Mendelian inheritance, nor 
by GWASs due to their rare frequencies among general 
populations (Fig.  1C) [29]. As for CRC, genome-wide 
sequencing approaches have allowed the identifica-
tion of a second batch of high-to-moderate risk genes, 
together with a new group of familial CRC and polypo-
sis syndromes [11]. These syndromes include polymerase 
proofreading-associated polyposis (PPAP) which result 
from an AD mutation of POLE or POLD1 genes [30], 
NTHL1-associated polyposis which, similar to MUTYH, 
is involved in base-excision repair (BER) pathway, and 
also follows AR inheritance [31], and mismatch repair 
gene biallelic inactivation-related adenomatous polyposis 
due to mutations of MSH3 [32] or MLH3 [33]. Additional 
syndromes include GREM1-associated hereditary mixed 
polyposis syndrome (HMPS1) [34], RNF43-associated 
serrated polyposis [35], and RPS20 mutations which is 
a rare cause of hereditary nonpolyposis CRC [36]. With 
these discoveries coming to light, it can be said nowadays 
that both monogenic and polygenic architectures attrib-
ute equally to the inheritance of CRC, and together they 
contribute about 25% of familial clustering [11].

However, as with the development of GWAS, the 
growing application of genome-wide sequencing and 
the increased amount of available genetic data, has simi-
larly led to increased concerns regarding the utility of 
this knowledge. Variants of unknown significance (VUS) 
in known CPGs is one of these problems [37]. Lucci-
Cordisco et  al. [38] have reviewed current data regard-
ing VUS of 24 CPGs included by the American College 
of Medical Genetics/Association for Molecular Pathol-
ogy in the list of genes that should be considered for the 
return of incidental findings [39]. In this review, which 
was based on Clinvar Miner (accessed on September 
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 14th, 2021) [40], the number of identified VUS for the 
APC gene, for example, was about 5100 in comparison 
to 1300 pathogenic variants [38]. Another problem is the 
increasing number of cases of CRC that are observed in 
families harboring germline variants in CPGs that are not 
generally associated with CRC, which raises the debate 
whether screening for CRC should be initiated in such 
families. BRCA1 and BRCA2, which are associated with 
hereditary breast and ovarian cancer are the best stud-
ied in this context. Nevertheless, the debate whether 
pathogenic BRCA  variants increase the risk of CRC is still 
ongoing [41, 42]. Other genes, raising similar debates, 
were summarized in a review of Valle et al. [11].

Not infrequently, genome-wide sequencing methods 
on familial or early-onset CRC cases, as well as within 
CRC families, have led to the identification of novel can-
didate genes, that need validation. In family-based stud-
ies, data are often analyzed using filtering approaches 
whereby a few affected and unaffected family members 
are prioritized for sequencing, to exclude variants that 
are not shared by affected individuals. Such an approach 
takes into consideration the type of the variant and avail-
able data on diverse genomic in silico databases [16]. In 
addition to well-established InSiGHT database with evi-
dence-based classification of variants in high-penetrance 
CRC genes [4], novel approaches are emerging for evalu-
ation of variants in novel candidate genes. An exam-
ple is the familial cancer variant prioritization pipeline 
(FCVPP) that has been developed for detection of del-
eterious germline variants with potential clinical impor-
tance in cancer predisposition [43]. As well, there are 
increasing proposals for next-generation linkage analysis 
methodologies to be coupled with family-based WGS 
studies, instead of the filtering approach [16, 29]. Such 
efforts further illustrate the complementary roles of the 
various genome-wide approaches.

Conclusion
To conclude, genome-wide linkage analysis, GWAS, 
and genome-wide sequencing approaches have allowed 
the current comprehensive, but not exhaustive, under-
standing of the genetic architecture of CRC. Neverthe-
less, much of the heritability of the disease has remained 
unexplained, and might be attributed to a broader model, 
including other biological and environmental modifiers.
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