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Abstract

Women with a pathogenic germline mutation in the BRCA1 gene face a very high lifetime risk of developing breast
cancer, estimated at 72% by age 80. Prophylactic bilateral mastectomy is the only effective way to lower their risk;
however, most women with a mutation opt for intensive screening with annual MRI and mammography. Given
that the BRCA1 gene was identified over 20 years ago, there is a need to identify a novel non-surgical approach to
hereditary breast cancer prevention. Here, we provide a review of the emerging preclinical and epidemiologic
evidence implicating the dysregulation of progesterone-mediated receptor activator of nuclear factor κB (RANK)
signaling in the pathogenesis of BRCA1-associated breast cancer. Experimental studies have demonstrated that
RANK inhibition suppresses Brca1-mammary tumorigenesis, suggesting a potential target for prevention. Data from
studies conducted among women with a BRCA1 mutation further support this pathway in BRCA1-associated breast
cancer development. Progesterone-containing (but not estrogen-alone) hormone replacement therapy is associated
with an increased risk of breast cancer in women with a BRCA1 mutation. Furthermore, BRCA1 mutation carriers
have significantly lower levels of circulating osteoprotegerin (OPG), the decoy receptor for RANK-ligand (RANKL)
and thus endogenous inhibitor of RANK signaling. OPG levels may be associated with the risk of disease,
suggesting a role of this protein as a potential biomarker of breast cancer risk. This may improve upon current risk
prediction models, stratifying women at the highest risk of developing the disease, and further identify those who
may be targets for anti-RANKL chemoprevention. Collectively, the evidence supports therapeutic inhibition of the
RANK pathway for the primary prevention of BRCA1-associated breast cancer, which may generate unique
prevention strategies (without prophylactic surgery) and enhance quality of life.
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Clinical management of women with a BRCA1
mutation
Women who inherit a pathogenic germline mutation in
the BRCA1 gene face a very high lifetime risk of devel-
oping breast cancer, estimated at 72% by age 80 com-
pared to 11% among women in the general population
[1, 2]. Current management of these women is limited

to either preventive surgery (i.e., prophylactic bilateral
mastectomy) or enhanced screening with MRI imaging
and mammography [3, 4]. The goal of screening is early
detection and whether this modality is a viable alterna-
tive to mastectomy has not been established as there are
no studies that have compared mortality with MRI
screening vs. preventive surgery specifically in this high-
risk population. Chemoprevention with selective estro-
gen receptor modulators such as tamoxifen or aromatase
inhibitors is also an option; however, this recommenda-
tion is based on data stemming from studies conducted
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among predominantly non-carriers and there have been
no large-scale studies evaluating the effectiveness in the
primary prevention of BRCA1-associated disease.
In an international study, Metcalfe and colleagues re-

ported that among 6226 healthy women with a BRCA
mutation, 80% were having regular breast screening, 28%
had a preventive mastectomy and only 5% took tamoxi-
fen [5]. This suggests that the rates of prophylactic mast-
ectomy remain low and that the majority of BRCA1
mutation carriers opt for intensified screening instead
[5–7]. Importantly, BRCA1 mutation carriers have
strongly expressed their preference for breast cancer risk
reduction and desire a novel prevention drug that is cur-
rently not available [8]. Given that the BRCA1 gene was
identified over 20 years ago, that preventive mastectomy
remains the gold standard, and that mutation carriers
have strong preferences for chemoprevention, it is timely
that an effective breast cancer risk reduction option be
identified [9, 10].
In this work, we will review the existing experimental

and epidemiological evidence implicating dysregulation
of the receptor activator of nuclear factor-κB (RANK)
signaling pathway in the predisposition to breast cancer
among women with an inherited BRCA1 mutation. An
emerging body of data suggests inhibition of RANK as a
potential target for prevention in this high-risk popula-
tion. Furthermore, we (and others) have hypothesized
that quantification of circulating osteoprotegerin (OPG),
the decoy receptor of RANK-ligand (RANKL), may serve
as a potential biomarker of BRCA1-associated breast
cancer risk that may not only improve upon current risk
prediction models, stratifying women at the highest risk
of developing the disease, but may further identify those
who may be targets for anti-RANKL chemoprevention.

Emerging role of the RANK signaling pathway in
the pathogenesis of BRCA1-associated breast
cancer
RANK, RANKL, and, OPG are members of the tumor
necrosis factor (TNF) and TNF receptor superfamily
[11–13]. RANKL can bind to and activate RANK signal-
ing whereas OPG acts as a soluble decoy receptor that
binds to RANKL thereby antagonizing RANK/RANKL-
mediated signaling [12–14]. The RANK pathway was
originally identified as an essential regulator of bone re-
sorption and remodeling [15] but is now known to be
involved in physiological and pathological roles beyond
bone remodeling, including mammary gland develop-
ment and tumorigenesis [16–19].
Seminal studies have shown that progesterone-

mediated upregulation of the RANK signaling pathway
is involved in mammary epithelial proliferation and stem
cell expansion and that it also drives tumorigenesis in
Brca1 deficient mice [17–21]. An earlier study by Poole

et al. showed that inhibition of progesterone signaling
with the progesterone antagonist mifepristone prevented
mammary tumorigenesis in Brca1-mutant mice [22]. In
2016, two key preclinical studies demonstrated that the
inhibition of progesterone-mediated RANK signaling
with pharmacological or genetic inactivation suppressed
mammary tumor formation in experimental models [23,
24]. Upon examination of mammary tissue in a Brca1
knockout mouse model, Nolan et al. identified a highly
proliferative subset of luminal progenitor cells compris-
ing a larger proportion of the total in BRCA1-mutant vs.
wildtype mammary tissue [23]. In human mammary tis-
sue specimens, RANK expression was confined to lu-
minal progenitor cells which had a transcriptional
signature similar to that of basal-like breast cancers [23].
Furthermore, the authors demonstrated a reduction of
progesterone-induced proliferation when RANKL signal-
ing was inhibited with denosumab (a monoclonal anti-
body to RANKL that is widely used to treat osteoporosis
and to prevent skeletal events in breast cancer patients
with metastases [25–27]) in a 3D-organoid model de-
rived from mammary cells with a mutation in BRCA1
and breast biopsies from BRCA1 mutation carriers [23].
When recombinant OPG (OPG-Fc), a RANKL inhibitor
like denosumab, was used for inhibition of RANKL in
mice with a Brca1 mutation, the authors also observed
reduced mammary tumor growth [23].
In the same year, Sigl et al. demonstrated that genetic

inactivation of RANK signaling in mammary epithelial
cells reduced the proliferation of mammary progenitor
cells and substantially delayed the onset of mammary
tumorigenesis in Brca1/p53 mutant mice [24]. Remark-
ably, about 25% of Rank/Brca1/p53 triple-mutant mice
never developed any breast tumors by around day 400
after birth, whereas all Brca1/p53 double-mutant mice
developed tumors by around day 200 [24]. Additionally,
the authors demonstrated that pharmacological inhib-
ition of RANK signaling with RANK-Fc, which is similar
to OPG-Fc, inhibited the development of pre-neoplastic
mammary gland lesions in Brca1/p53 transgenic mice
[24]. Sigl and colleagues also showed the effectiveness of
RANKL blockade in human mammary progenitor activ-
ity using tissues of BRCA1 mutation carriers [24]. They
reported a significant decrease in vitro clonogenic cap-
acity of progenitor cells after denosumab treatment,
highlighting the positive effects of RANKL inhibition to
prevent breast cancer [24]. In summary, there is strong
evidence indicating the essential role of progesterone-
mediated RANK signaling in the expansion of a popula-
tion of RANK+ luminal progenitors which are the likely
cells of origin for BRCA1-associated basal-like breast
cancers [28].
Along the same lines, evidence from epidemiological

studies also supports progesterone-mediated upregulation
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of the RANK pathway in the predisposition to breast can-
cer among women with a BRCA1 mutation. In a study by
Widschwendter and colleagues, the authors compared cir-
culating levels of sex hormones (i.e., progesterone and es-
trogen) as well as OPG and soluble RANKL (sRANKL) in
BRCA mutation carriers (n = 391) vs. non-carriers (n =
782). They observed 33% higher (p = 0.007) levels of luteal
phase serum estrogen and 121% higher (p = 0.00037)
levels of progesterone among BRCA mutation carriers,
particularly in BRCA1 mutation carriers, compared with
non-carriers across the menstrual cycle [29]. These data
support those inherent aberrancies in the levels of sex
hormones found in BRCA mutation carriers may be asso-
ciated with the elevated risk of breast cancer. Moreover,
serum OPG levels were inversely associated with luteal
phase progesterone levels, particularly among BRCA1/2
mutation carriers (rho = − 0.216; p = 0.002) vs. controls
(rho = − 0.098; p = 0.06) [30]. In macaques, administration
of combined estrogen and progestin hormone replace-
ment therapy (HRT), but not estrogen-only HRT, was as-
sociated with significantly lower levels of OPG in both
breast and serum compared to the control animals not ex-
posed to sex hormones [30]. Lower levels of serum OPG
were also associated with increased mammary epithelial
proliferation in these macaques (rho = − 0.545, p < 0.001),
and increased (p = 0.01) levels of OPG were observed in
postmenopause [30]. However, RANKL upregulation in
mammary tissue samples in response to combination
HRT was not reflected in the circulation [30]. These data
support circulating OPG, but not necessarily RANKL, as a
potential marker of local changes in RANK signaling at
the breast tissue level and possibly breast cancer risk (see
Section III below).
Findings from clinical trials have also supported the

role of progesterone (rather than estrogen) signaling in
development of breast cancer. Most notable are data
from the Women’s Health Initiative, randomized trials
of HRT, which found a positive correlation between
combined estrogen-progestin therapy and breast cancer
risk (hazard ratio, HR = 1.55; 95% CI 1.41–1.70) [31, 32].
However, no association was found between estrogen-
alone HRT and breast cancer risk (HR = 0.77; 95% CI
0.62–0.95) [33]. This central role of progesterone breast
cancer development was the conclusion of a recent
meta-analysis of the worldwide evidence of HRT and
breast cancer risk which summarized among current
users, there were definite risks associated with the use of
combined therapy vs. estrogen-alone during years 1–4
(estrogen plus progesterone relative risk, RR = 1.60, 95%
CI 1.52–1.69; estrogen-only RR = 1.17, 1.10–1.26) [34].
These definite risks increased two-fold during years 5–
14 (estrogen plus progesterone RR = 2.08, 2.02–2.15;
estrogen-only RR = 1.33, 1.28–1.37) [34]. During years
5–14, the estrogen plus progesterone risks were greater

with daily than with less frequent progesterone use
(RR = 2.30, 95% CI 2.21–2.40 vs. RR = 1.93, 95% CI
1.84–2.01; heterogeneity p < 0.0001). Interestingly, for
BRCA1 mutation carriers, breast cancer risk decreases
after menopause when their sex hormones become sub-
stantially low [35, 36]. Importantly, in a prospective ana-
lysis by our group, we previously showed that combined
HRT use following an oophorectomy has been reported
to increase the incidence of breast cancer compared to
estrogen-alone HRT among 872 BRCA1 mutation car-
riers who underwent bilateral oophorectomy [37]. The
cumulative incidence among those who took progester-
one HRT was 22% vs. 12% with the use of estrogen-
alone (P-log rank = 0.04). These associations were stron-
ger for women < 45 years at the time of prophylactic oo-
phorectomy. In the same study cohort, we previously
showed that oophorectomy was not associated with a re-
duced risk of breast cancer (primary and contralateral)
substantiating less of a role of estrogen in the pathogen-
esis of BRCA1-associated breast cancer development
[38]. Collectively, underlying mechanisms to describe
the increased risk of breast cancer likely involve dysregu-
lation of the progesterone-mediated RANK signaling.

Circulating levels of OPG as a potential marker of
breast cancer risk: evidence from the general
population and BRCA1 mutation carriers
Given the considerable experimental and preclinical data
implicating RANK signaling in mammary tumorigenesis,
there has been increasing interest in the quantification
of either circulating sRANKL, OPG, or even the
sRANKL/OPG ratio as potential biomarkers of cancer
risk. Table 1 summarizes the key characteristics and
findings of the five epidemiological studies that have
evaluated the relationship between circulating OPG,
sRANKL, or OPG/RANKL ratio and breast cancer risk
in the general population. Although based on very few
studies published to date, these limited data suggest the
potential utility of these biomarkers for disease risk
prediction.
Briefly, a prospective study conducted by Vik et al.

showed when stratified by age and sex, a significant in-
verse relationship between serum OPG and breast can-
cer risk in women under 60 years of age, but not in
women above 60 years of age after adjustment, although
the sample size was relatively small (upper vs. lower ter-
tile RR = 0.24; 95% CI 0.10–0.61; ptrend = 0.002) [39].
While the authors observed a linear relationship between
the overall cancer-related mortality and serum OPG (RR
of cancer-related mortality increased by 25% per 1
standard deviation increase in serum OPG, RR 63%
higher in upper vs. lower tertile), only 7 out of 6279
cases were related to breast cancer [39]. Interestingly,
Vik et al. observed that high serum OPG levels were
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associated with higher risk of gastrointestinal cancer
(HR = 1.79; 95% CI 1.19–2.67) [39].
Similarly, Fortner et al. conducted a case-control study

nested in the European Prospective Investigation into
Cancer and Nutrition (EPIC) cohort to investigate the as-
sociation between circulating OPG levels and breast can-
cer risk by hormone receptor type and matched breast
cancer cases with healthy controls [40]. The authors found
that the high level of circulating OPG was a significant
risk factor for estrogen receptor (ER)-negative breast can-
cer development (top vs. bottom tertile OPG RR ER-
negative breast cancer = 1.93; 95% CI 1.24–3.02; ptrend =
0.03) but not for ER-positive breast cancer development

(top vs. bottom tertile OPG RR ER-positive breast can-
cer = 0.84; 95% CI 0.68–1.04; ptrend = 0.18) [40].
In the same year, Kiechl et al. published a case-control

study that assessed whether serum OPG and RANKL
levels were associated with the risk of developing breast
cancer for postmenopausal women without a BRCA mu-
tation germline [41]. In this study, 98 women developed
breast cancer and women with high ratio of RANKL/
OPG serum levels and high progesterone exhibited a
5.33-fold higher risk of developing breast cancer (OR
breast cancer in high RANKL/OPG ratio and high pro-
gesterone group = 5.33; 95% CI 1.5–25.4; p = 0.02) [28,
41]. In a subsequent analysis of sRANKL in the EPIC

Table 1 Overview of studies assessing the relationship between circulating concentrations of sRANKL or OPG and risk of breast
cancer among healthy women without a BRCA mutation [28]

Author,
Year

Study Source, Study Design,
Sample Size

Sample
Type

Study Aims Follow-
up

Population
Size and
Number of
Cases

Results

Vik et al.,
2015 [39]

Tromsø Study
Prospective cohort
n = 3174 women (range 25–85 years)

Serum To investigate the
association between OPG
and risk of breast cancer
incident cancer in
women

Median:
13.5 years

76 incident
breast
cancers

RR total upper vs. lower
tertile RR = 0.54; 95% CI
0.28–1.06; ptrend=0.07)
RR > 60 years upper vs.
lower tertile RR = 1.10; 95%
CI 0.49–2.46; ptrend=0.84)
RR < 60 years upper vs.
lower tertile RR = 0.24; 95%
CI 0.10–0.61; ptrend = 0.002)

Fortner
et al., 2017
[40]

EPIC cohort
Nested case-control
n = 2008 breast cancer cases matched
1:1 with healthy controls (pre- and
post-menopausal women)

Serum To investigate the
association between
circulating OPG and
breast cancer risk by
hormone receptor
subtype

Baseline:
1992–
2000
End of
follow-up:
2003–
2006

2008 incident
invasive
breast cancer
cases (1622
ER+,
386 ER–)

Top vs. bottom tertile OPG
RR ER– breast cancer = 1.93;
95% CI 1.24–3.02; ptrend =
0.03
Top vs. bottom tertile OPG
RR ER+ breast cancer = 0.84;
95% CI 0.68–1.04; ptrend =
0.18

Kiechl et al.,
2017 [41]

UKCTOCS, Bruneck cohorts and
SUCCESS trial
Case-control
n = 278 postmenopausal women

Serum To assess whether serum
OPG and RANKL are
associated with increased
risk of developing breast
cancer

Range
(cases): 5–
24
months
Median
(controls):
3.24 years

98 breast
cancer cases

OR breast cancer in high
RANKL/OPG ratio and high
progesterone group = 5.33;
95% CI 1.5–25.4; p = 0.02

Sarink et al.,
2017 [42]

EPIC cohort
Nested case-control
n = 1976 incident invasive breast
cancer matched 1:1 with healthy
controls (median age at blood
collection: 56 years (range 27–77
years))

Serum To investigate the
association between
serum sRANKL levels and
breast cancer risk by
hormone receptor
subtype

Baseline:
1992–
2000
End of
follow-up:
2003–
2006

1976 incident
invasive
breast cancer
cases (1598
ER+)

Serum sRANKL associated
with ER+ disease (5th vs. 1st
quintile RR = 1.28; 95% CI
1.01–1.63; ptrend = 0.20)
No association between
serum sRANKL and ER–
disease (5th vs. 1st quintile
RR = 0.87; 95% CI 0.53–1.44;
ptrend = 0.21)

Kotsopoulos
et al., 2020
[43]

NHS II
Nested case-control study
n = 297 incident invasive breast
cancer (premenopausal women)
matched 1:1 with healthy controls
(median age at blood collection: 44
years (range 41–47 years))

Plasma To investigate the
association between
plasma OPG and breast
cancer risk

Baseline:
1989–
1990
End of
follow-up:
2009

297 incident
invasive
breast cancer
cases

No association between
plasma OPG and breast
cancer risk (highest vs.
lowest quartile OR = 0.78;
95% CI 0.46–1.33; ptrend =
0.30)

Abbreviations: CI Confidence Interval, EPIC European Prospective Investigation into Cancer and Nutrition, ER estrogen receptor, OPG osteoprotegerin, OR odd ratios,
NHS II Nurses’ Health Study II, RR relative risk, sRANKL soluble receptor activator of nuclear factor κB ligand, UKCTOCS UK Collaborative Trial of Ovarian
Cancer Screening
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cohort, Sarink et al. observed an inverse association of
serum sRANKL/OPG ratio with ER-negative breast can-
cer (5th vs. 1st quintile RR = 0.60; 95% CI 0.31–1.14;
ptrend = 0.03). The authors also observed a positive asso-
ciation between serum sRANKL and ER-positive breast
cancer (5th vs. 1st quintile RR = 1.28; 95% CI 1.01–1.63;
ptrend = 0.20) but not ER-negative disease [42]. Add-
itional studies are necessary to explain why these associ-
ations differ by breast cancer subtype.
Conversely, in a recent study conducted by Kotsopou-

los et al., the authors observed no substantial evidence
of an association between plasma OPG and breast can-
cer risk among premenopausal women in a case-control
analysis nested within the Nurses’ Health Study II; how-
ever, the authors observed a suggestive inverse trend
and their analyses may have been underpowered (highest
vs. lowest quartile OR = 0.78; 95% CI 0.46–1.33; ptrend =
0.30) [43].
The three studies that have evaluated the relationship

of OPG and/or sRANKL with breast cancer risk specific-
ally among women with a BRCA1 or BRCA2 mutation
are summarized in Table 2. In the previously described
study by Widschwendter et al., the authors reported sig-
nificantly lower serum OPG concentrations among pre-
menopausal BRCA mutation carriers, particularly in
BRCA1 mutation carriers (p = 0.018), compared with
non-carriers [30]. They did not measure risk associated

with levels of OPG but did find that higher levels of cir-
culating OPG were associated with lower risk pathogenic
germline mutations in BRCA1/2 mutation carriers
(beta = − 0.058; 95% CI − 0.020, − 0.096; p = 0.003) [30].
In a prospective cohort study by Odén et al., the authors
showed that high vs. low plasma OPG was associated
with risk of developing breast cancer among BRCA1 and
BRCA2 mutation carriers (n = 206; HR = 0.25; 95% CI
0.08–0.78; p = 0.02) [44]. However, there was no associ-
ation between plasma RANKL and breast cancer risk
when stratified into high vs. low plasma RANKL levels
(HR = 1.06; 95% CI 0.34–3.28; p = 0.86) [45]. Although
limited, the evidence points towards a role of dysregu-
lated RANK signaling in the development of BRCA-asso-
ciated breast cancer and thus the potential for
chemoprevention with a RANKL inhibitor such as deno-
sumab [30]. Furthermore, this suggests that the integra-
tion of circulating OPG levels (or the sRANKL/OPG
ratio) into risk prediction models may have the potential
to identify women who are at the highest risk of devel-
oping breast cancer.

Non-genetic and genetic regulators of OPG and
RANKL expression
Several studies have reported upon or evaluated how
various hormonal factors, cytokines, growth factors may
influence mRNA expression or protein levels of OPG

Table 2 Summary of studies assessing the relationship between circulating concentrations of sRANKL and/or OPG and risk of breast
cancer among BRCA1 and BRCA2 mutation carriers [28]

Author, Year Study Source,
Study Design,
Sample Size

Study Aims Follow-
up

Population
Size and
Number of
Cases

Results

Widschwendter
et al., 2015 [30]

UKFOCSS
Cross-sectional
n = 391 BRCA1/2
mutation carriers
and 782 healthy
controls (> 35 years)

To evaluate the relationship between the
BRCA1/2 mutation and levels of sRANKL
and OPG
To assess the relationship between
reported breast cancer risk associated with
the nucleotide position of the BRCA1/2
germline mutation and serum OPG
concentrations

N/A N/A Lower serum OPG and sRANKL levels
in BRCA1/2 mutation carriers vs.
healthy controls
Germline BRCA1/2 mutation locations
known to confer an increased risk of
breast cancer were associated with
lower OPG levels

Odén et al.,
2016 [44]

Risk Factor Analysis
of Hereditary Breast
and Ovarian Cancer
Prospective cohort
n = 206 BRCA1/2
mutation carriers
between 18 and 70
years

To assess whether plasma OPG levels
contribute to breast cancer risk in BRCA1/2
mutation carriers

Mean:
6.5 years
(0.1–18.8
years)

18 incident
breast
cancer cases

High vs. low OPG HR breast cancer =
0.25 (95% CI 0.08–0.78), p = 0.02

Zaman et al.,
2019 [45]

Risk Factor Analysis
of Hereditary Breast
and Ovarian Cancer
Prospective cohort
n = 184 BRCA1/2
mutation carriers
between 18 and 80
years

To investigate the association between
plasma RANKL levels and breast cancer risk
in BRCA1/2 mutation carriers

Mean:
6.3 years
(0.02–
19.24
years)

15 incident
breast
cancer cases

High vs. low RANKL HR breast
cancer = 1.06 (95% CI 0.34–3.28), p =
0.86

Abbreviations: CI Confidence Interval, HR hazard ratio, OPG osteoprotegerin, sRANKL soluble receptor activator of nuclear factor κB ligand, UKFOCSS UK Familial
Ovarian Cancer Screening Study
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and sRANKL. For example, estrogen, IL1α, TNFα, and
TGFß upregulate OPG expression [46–50] whereas
parathyroid hormone and parathyroid hormone-related
prostaglandin E2 and glucocorticoids protein downregu-
late OPG expression [51–60]. The role of vitamin D3,
cytokines and growth factors is less consistent and stud-
ies reported mixed results [55, 61–70]. Overall, OPG ex-
pression is upregulated by many suppressors of
osteoclast differentiation (i.e., transforming growth fac-
tor β, estrogen) and downregulated by some pro-
resorptive agents (i.e., parathyroid hormone, prostaglan-
dins) [28, 71]. Most studies report reciprocal regulation
of OPG and RANKL, where factors that downregulate
expression of OPG will upregulate expression of
RANKL, and vice-versa [28, 71]. This reciprocal regula-
tion modulates pro-resorptive compounds to stimulate
resorption via RANKL induction while inhibiting effects
of OPG [28]. Estrogen, TGFß, and interferon-ɣ down-
regulate RANKL expression, whereas vitamin D3, para-
thyroid hormone, and parathyroid hormone-related
prostaglandin E2, IL1α, IL1ß, IL11, IL17, TNFα, prosta-
glandin E2, and glucocorticoids upregulate RANKL ex-
pression [46, 47, 51–54, 57, 59, 64–67, 69]. Yet, there
are some conflicting findings from one publication to
another.
Epidemiological studies have also evaluated correlates

of OPG. Notable, numerous studies have shown a strong
positive correlation between OPG and age in women
[40, 72–75]. The onset of menopause is highly related to
age and decreased estrogen levels are one of the contrib-
utors to rapid bone loss. It is hypothesized that this de-
cline in estrogen levels can decrease OPG production in
osteoblasts and promote bone resorption [47, 48, 76].
Conversely, Sarink et al. found that OPG concentrations
in healthy pre- and post-menopausal women in the gen-
eral population are minimally impacted by hormonal
lifestyle factors [77]. Other studies also found mixed,
and often weak, associations with OPG levels in healthy
women with circulating endogenous sex hormones, such
as estradiol, menopause, and HRT use [40, 72, 78, 79].
For high-risk women, it appears that an inherited

BRCA1 and BRCA2 are associated with significantly
lower circulating OPG levels. As previously described, a
BRCA1 or BRCA2 mutation is associated with decreased
circulating serum OPG expression. Beyond the BRCA
genes, a few studies investigated genetic factors associ-
ated with circulating OPG levels [80–84]. Recently,
Kwan et al. conducted a meta-analysis of five genome-
wide association studies comprising individuals from
European and Asian origin (n = 10,336) [82]. The au-
thors discovered two significant genome-wide significant
loci (8q23-q24.1, located > 100 kb upstream of the gene
that encodes OPG; and 17q11.2) and one locus
(14q21.2) with near genome-wide significance associated

with circulating OPG levels (mostly OPG serum levels)
[82]. They estimated that over half of the heritability of
age-adjusted OPG levels could be explained by all SNPs
examined in their study [82]. Interestingly, Kwan et al.
evaluated the association between a single nulceotide
polymorphism (SNP) rs875525 in the ANKH gene and
OPG levels however it did not reach genome-wide sig-
nificance in their meta-analyses [82]. In contrast, Vistor-
opsky et al. found a significant association between a
SNP rs875525 in the ANKH gene and plasma OPG
levels from their family-based association study (n = 556)
[84]. Collectively, the current literature demonstrates in-
consistent findings regarding genetic regulators of OPG
expression, which emphasizes the need for additional
work on fine-mapping these regions and identifying
other casual variants using a large sample size [82].
Overall, our current understanding of factors regulat-

ing OPG expression is limited and the conflicting find-
ings among different studies make it challenging to
come to a consensus. This is further confounded by the
complexity of the RANK signaling pathway that can be
regulated by the interaction of various factors and as the
changes in serum OPG levels may not reflect the tissue
of interest [85]. Nonetheless, OPG is a promising bio-
marker for BRCA1-associated breast cancer risk due to
the association between BRCA1 mutation and OPG
levels [30].

Conclusion and future directions
Here we have presented a brief overview of the experi-
mental and epidemiologic evidence suggesting that dys-
regulation of the progesterone-mediated RANK
signaling pathway plays a critical role in the pathogen-
esis of BRCA1-associated breast cancer. Based on obser-
vational data, BRCA1 mutation carriers have
significantly lower concentrations of circulating OPG
[30], and OPG levels may be associated with the risk of
disease. This suggests the potential role of integrating
OPG levels (or the sRANKL/OPG ratio) to improve
upon cancer risk prediction models. Furthermore, the
preclinical and experimental data support therapeutic in-
hibition of the RANK pathway for the primary preven-
tion of BRCA1-associated breast cancer [23, 24].
Randomized controlled trials are needed to evaluate

the clinical effectiveness of denosumab for BRCA1-asso-
ciated breast cancer prevention in these high-risk
women. Whether it is effective for the prevention of
ovarian cancer or BRCA2 mutation carriers is not
known. It is of interest to see whether this pathway will
similarly apply to ovarian cancer. Ultimately, denosumab
may provide a necessary, non-surgical, and effective risk
reduction intervention for a population at substantial
risk for developing breast (and potentially ovarian) can-
cer. Although a risk-reducing mastectomy is a highly
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effective procedure for women with a BRCA1 mutation,
the low uptake and high opt-out rate for these women
for screening instead underlies the need to develop new,
non-invasive preventative agents and strategies for man-
aging BRCA1-associated breast cancer risk.
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